If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20q-4q^2-4=0
a = -4; b = 20; c = -4;
Δ = b2-4ac
Δ = 202-4·(-4)·(-4)
Δ = 336
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{336}=\sqrt{16*21}=\sqrt{16}*\sqrt{21}=4\sqrt{21}$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-4\sqrt{21}}{2*-4}=\frac{-20-4\sqrt{21}}{-8} $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+4\sqrt{21}}{2*-4}=\frac{-20+4\sqrt{21}}{-8} $
| (2x-1)(6+4x)=0 | | 36=-8y+2(y+6) | | -6+x4=-4 | | 4/15x3/1=5 | | 8=w+3w | | 8.76x+26.28=52.56 | | 5.7n+4.1=6.58 | | 96=x*x*x | | -2q^2-2q-4=0 | | (3v+5)(7-v)=0 | | +5•(7+x)=31+x | | -u+78=226 | | 2/3-1/16x=1/2 | | 80-u=198 | | (n-4)(2n+3)=0 | | 78=-w+291 | | 9+6y=-15 | | 3(z+5=8z | | 3x*5x+4=2500 | | (x*0.05)+(x*0.10+5)+(x*0.25*2)=4.40 | | 18.13+18.8b=-3.5+8.5b | | 3/4(6x+2)=12 | | -2=-4+v8 | | -19-13m-17=-9m+20 | | -9-5y=-19 | | 7x-56=-7 | | 9(q-4)=-18 | | 5y+8=58 | | 3/4(w+2)=11/3 | | x-2.7=3.3 | | 4v=5v-11 | | 10x-49=11 |